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The response of a balanced horizontal rigid motor rotor supported by a deep groove ball
bearing is theoretically simulated. The e!ect of radial internal clearance of the ball bearing
on the dynamic response of the rotor is studied. The system equations have been numerically
integrated, the results of which have been validated with harmonic balance alternating
frequency time domain method. Variation of radial internal clearance shifts the peak
response as the speed is changed over a range. The results of a parametric study done by
taking radial internal clearance have resulted in the observation of a third region of
instability which has not been reported in literature. The appearance of regions of periodic,
subharmonic and chaotic behavior is seen to be strongly dependent on the radial internal
clearance. The system response is analyzed for stability and nature with the help of Floquets
method for stability analysis and generation of higher order Poincare maps. The bearing
sti!ness is estimated experimentally and the e!ect of variation in radial internal clearance on
the bearing sti!ness is studied.
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1. INTRODUCTION

The study of the dynamic response of a perfectly rigid and balanced, horizontal
rotor supported by ball bearings is essentially a study of a non-linear system. The
non-linearity is because of the radial internal clearance and the Hertzian contact between
the races and the balls; there is also a parametric e!ect because of the varying compliance of
the bearing.

The varying compliance e!ect was studied theoretically by Perret [1] considering a deep
groove ball bearing with the elastic deformation between race and balls modelled by the
Hertzian theory and no bending of races. Perret [1] studied the bearing at the instant when
the balls are arranged symmetrically around the load line, i.e., with either a ball or a ball gap
directly under the load. In the intermediate cage position, however, the balls are
non-symmetrically arranged which means that when loaded vertically, the center of the
inner ring will undergo a horizontal as well as vertical displacement. Meldau [2] studied
theoretically the two-dimensional motion of shaft center. Both Perret [1] and Meldau [2]
performed a quasi-static analysis since inertia and damping force were not taken into
account.
0022-460X/00/500723#34 $35.00/0 ( 2000 Academic Press
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Sunnersjo [3] studied the varying compliance vibrations theoretically and
experimentally, taking inertia and damping forces into account. Fukata et al. [4] "rst took
up the study of varying compliance vibrations and the non-linear dynamic response for the
ball bearing supporting a balanced horizontal rotor with a constant vertical force. It is
a more detailed analysis as compared to Sunnerjo's [3] work as regimes of super-harmonic,
sub-harmonic and chaotic behavior are found out. Mevel and Guyader [5] have developed
a theoretical model of a ball bearing supporting a balanced horizontal rigid rotor, with
a constant vertical radial force. This is similar to the work done by Fukata et al. [4] but
more results have been reported for parametric studies undertaken and routes to chaos
traced out. Chaos in this model of bearing has been reported to come out of sub-harmonic
route and quasi-periodic route.

Arc length continuation technique has been used for obtaining dynamic characteristics of
ball bearings by Sankaravelu et al. [6]. This technique enables one to identify the possible
parameter ranges for which the jump phenomena or the sudden change of the dynamic
behavior of the system occurs. The ball bearing taken for study supports a constant vertical
radial load of a balanced horizontal rotor. Sankaravelu et al. [6] have reported that the arc
length continuation method takes less computation time as compared to direct integration,
and the method obtains steady state response and stability analysis simultaneously. The
eigenvalues of the Floquet matrix are obtained with the shooting technique which gives the
bifurcation points. The system Sankaravelu et al. have taken for study is the same as that
taken by Fukata et al. [4]. This work reports the appearance of chaotic response due to the
intermittency. Once the stability sets in numerical integration is used to obtain the response.
Tamura et al. [7] have theoretically estimated the sti!ness of the ball bearing subjected to
a constant radial load. Garguilo [8] has developed a new set of equations for providing
initial estimates of sti!ness of rolling element bearings.

Clearance in mechanical components introduces very strong non-linearity. The study of
the e!ect of clearance non-linearity on the response of rotors has gained a lot of attention
lately because of the development of high-speed rotors such as the space shuttle main engine
turbo-pump rotor. Clearance non-linearity is di!erent from most of the other
non-linearities because it cannot be approximated by a mathematical series. Yamamoto [9]
performed an analytical investigation of vibratory behavior of a vertical rotor supported on
ball bearings with radial clearance. The conclusion of this work shows that the maximum
amplitude at a critical speed and the value of critical speed decrease with increasing radial
clearance. Childs [10] has studied the e!ect of non-symmetric clearance on rotor motion
with the help of perturbation method under the assumption of small non-linearity. Saito
[11] has reported the study of non-linear unbalance response of a horizontal Je!cott rotor
supported on ball bearings with radial clearance. The numerical harmonic balance
technique has been used for calculating non-linear vibration of a rotor and an expression for
the non-linear force is also given.

The study of excessive vibrations of the liquid oxygen pump in the space shuttle main
engine pump by Childs and Moyer [12] and Beatty and Hine [13] during hot "ring ground
testing has shown that clearance non-linearity generates a frequency component
incommensurate with rotation frequency. Day [14] carried out an analytical study of
a rotor system supported on bearings with clearance. A special frequency named nonlinear
natural frequency is de"ned and used to develop the solution of the non-linear Je!cott rotor
as singular asymptotic expansions. This non-linear frequency which is the ratio of cross
sti!ness and damping is incommensurate with respect to the rotational frequency. Kim and
Noah [15] have studied a horizontal Je!cott rotor supported on bearing with clearance.
Harmonic balance/alternating frequency time domain (AFT) technique has been used for
obtaining synchronous and sub-synchronous whirling motion of the rotor.
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Ehrich [16] has analyzed theoretically the model of a Je!cott rotor system operating
eccentrically in a clearance and in local contact with stator possessing the characteristics of
a bilinear oscillator. Sub-critical super-harmonic and super-critical subharmonic responses
have been reported, which are shown to be mirror images of each other. Chaotic behavior
and bifurcations can be observed. The response of the theoretical model compares well with
the test data of an aero-engine gas turbine.

The dynamics of a shaft disk arrangement with clearance non-linearity at the supports
has been dealt with by Flowers and Wu [17]. Numerical simulation and limit cycle analysis
has been performed. Kim and Noah [18] have studied the theoretical model of Je!cott
rotor with bearing clearance, they have used a modi"ed HBM/AFT method to obtain
quasi-periodic response. The theoretical and experimental study of the non-linear e!ects
introduced because of the ball bearing have not been reported. In this work, the e!ect of
radial internal clearance has been studied, the appearance of subharmonics and Hopf
bifurcation is seen theoretically whereas the shift in the peak response is also observed
experimentally.

2. PROBLEM FORMULATION

The rotor-bearing system under study has the outer race of the ball bearing "xed to
a rigid support and the inner race "xed rigidly to the shaft. A constant vertical radial force
acts on the bearing. The excitation is because of the varying compliance vibrations of the
bearing which arise because of the geometric and elastic characteristics of the bearing
assembly varying according to the cage position.

The ball bearing model considered here has equispaced balls rolling on the surfaces of the
inner and outer races. For developing the theoretical model it is assumed that the outer race
is "xed rigidly to the support and the inner race is "xed rigidly to the shaft and there is no
bending of races. There is perfect rolling of balls on the races so that the two points of the
ball (A and B) touching the outer and inner races have di!erent linear velocities (Figure 1).
The center of the ball has a resultant translational velocity. Therefore,
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Figure 1. Ball bearing.
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The varying compliance frequency is given by
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where N
b
is the number of balls. From equation (1), we can write
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The number BN depends on the dimensions of the bearing, for SKF6002, BN"3)6.
The damping of a ball bearing is very small; this is because of friction and small amount of

lubrication. The estimation of damping of a ball bearing is very di$cult because of the
dominant extraneous damping which swamps the damping of the bearing. KraK mer [19] has
provided an estimation of the bearing damping.
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d"(0)25}2)5)10~5 K (N s/km),

where K is the linearized sti!ness of the ball bearing.
The linearized sti!ness can be estimated from the method given by Tamura [7] or

Gargiulo [8]. The bearing is assumed to be free of local and distributed defects. The
balls are arranged equispaced around the bearing and move around the race with
equal velocity, which is physically possible because of the cage. The radial internal
clearance is the clearance between an imaginary circle, which circumscribes the balls
and the outer race. This clearance is also called the play in the bearing. For a horizontal
rotor as the shaft settles down due to the radial constant force =, the radial
internal clearance closes in the angular contact zone [20]. The ball}race contact
deformation of the ball generates a restoring force with non-linear characteristics because of
the Hertzian contact.
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The values of C
b

and n are arrived at by performing the elastic analysis of the
Hertzian contact between the inner and outer race and the ball [20]. For
SKF6002 C

b
"7)055]109 N/m3@2. Taking the x and y displacements of the center of the

inner race
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If the expression inside the brackets is greater than zero, then the ball at angular location h
i

is loaded giving rise to a restoring force Fhi . If the expression in the brackets is negative or
zero, then the ball is not in the load zone, and the restoring force Fhi is set to zero. The &&#''
sign as a subscript in equation (11) signi"es the above. The total restoring force is the sum of
the restoring force from each of the rolling elements. Thus, the total restoring force



TABLE 1

Bearing damping

SKF6002 (="6 N) Fukata (="58)8 N)

K (N/m) 13)5]1)06 42]106
d (N s/m) 33)75}337)5 105}1050
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components in the X and > directions are
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As the shaft rotates, the angle h
i
changes with time (Figure 1) and is given by
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Here the reference is the vertical axis which is the direction of the constant vertical force. We
see that h

i
is a function of time and this imparts the parametric e!ect to the system.

The damping in this system is represented by an equivalent viscous damping C. The value
of the damping depends on the linearized bearing sti!ness (5). The value of the damping has
been estimated (Table 1). The system governing equations accounting for inertia, restoring
and damping force and constant vertical force acting on the inner race are,
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Here m is the mass of the rotor supported by bearing and mass of inner race. The imbalance
force F

u
for this case is zero. System (14) consists of two coupled non-linear ordinary second

order di!erential equations having a parametric e!ect in them. The sti!ness because of its
step change behavior, the parametric e!ect with 1)5 non-linearity and the summation term
is non-analytic in nature.

3. METHODS OF SOLUTION

The two coupled non-linear sound order di!erential equations are solved by numerical
integration which is a time domain approach as well as by the harmonic balance/alternating
frequency time (AFT) domain technique. The non-analytic nature of the sti!ness term
renders the system equations di$cult for analytical solution.
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3.1. NUMERICAL INTEGRATION

For performing numerical integration, the system equations are transformed into "rst
order form by introducing two variables z

1
and z

2
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Since the right-hand side depends on time the system is non-autonomous.
These equations were found to be numerically sti!. Comparin and Singh [21] have

pointed out that systems with clearance non-linearity are frequently a%icted by numerical
sti!ness. The numerical integration method used in the present analysis is based on the
Cash}Karp Runge}Kutta method (RKCK). It was seen that the RKCK method [22] took
3 times more CPU time as compared to the NAG Subroutine based on the backward
di!erentiation method which is of implicit type. The RKCK method is a "fth order
explicit-type Runge}Kutta method.

3.1.1. Choice of step size and initial condition

The RKCK method has a provision for estimating local truncation error by comparing
with embedded fourth order Runge}Kutta method. For various speeds and a damping
value of 200 Ns/m and ="6 N, the system was numerically integrated on a Silicon
Graphics work station for a number of time step sizes. The local truncation error and CPU
time are plotted against the step size in Figure 2. We can see that region AA@ gives the best
results. Accordingly, a step size of 1]10~4 s is chosen in all subsequent calculations.

3.2. MODIFIED HARMONIC BALANCE METHOD

The harmonic balance method (HBM) has been applied for solving the system equations
(10). The presence of non-analytic sti!ness terms suggests a need for modi"cation of the
HBM, for which the alternating frequency time (AFT) domain technique is used [23].
Rotor-bearing systems with clearance non-linearity at the support have been found to have
Figure 2. E!ect of step size.
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amplitude-modulated response [12, 14, 18]. Also, for the rotor bearing system considered it
is seen from numerical integration solutions that under certain conditions response has
amplitude modulation. Taking the interaction between the two frequencies only, i.e., carrier
and modulated frequency, a double-harmonic generalized series is needed to express x,
y and the non-linear force terms.
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frequencies respectively. The non-analytic non-linear spring force terms are also
represented by similar double-harmonic series.
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The coe$cients of sin and cos in the series representing non-linear force terms are
functions of displacements X and >. The harmonic series representing the displacements
and non-linear force terms is not an ordinary Fourier series because the frequency spectra,
l
ij
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1
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2
(where i"0,2 , N; j"!N,2 , 0,2 ,#N) are not harmonically related.

The harmonic series are almost periodic functions [24]. The series in equation (12) can be
di!erentiated with respect to time to give corresponding series for velocity and acceleration.

Substituting the series for displacement, velocity and acceleration into system (10) and
equating coe$cients of cos, sin and constant terms on both sides of the equations, we get
nonlinear algebraic equations with coe$cients of generalized harmonic series as the
variables. Comparisons of constant terms on both sides of the two equations give
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by comparing coe$cients of sin and cos on both sides, we get the following relations:
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For solving this set of non-linear algebraic equations the coe$cients of the series have to be
determined. Since the series are not Fourier series the discrete Fourier transform (DFT)
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algorithms cannot be used for estimating the coe$cients. The coe$cients are determined by
minimizing the mean square error between the exact steady state solution and the solution
from the series [24]. The generalized series can now be expressed in the following form:
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x
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y
N, (16)
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x
N and M¸

y
N are matrices with components as coe$cients of the series for X and

> respectively. The coe$cients of the generalized series representing the displacements
X and > are estimated by
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(M) is increased, the approximate generalized series X (t) comes closer to the exact steady
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The non-linear force terms are functions of known displacements X and >.
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The coe$cients of the generalized Fourier series representing the non-linear force terms are
components of MM

x
N and MM

y
N. From the method of minimization of least squares, we can write
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These coe$cients are used with M¸
X
N and M¸

Y
N to estimate the value of g (i) (i"1,2,).

These non-linear algebraic equations are solved by Broyden's method [22].
The steady state solution which is needed for this method is obtained by numerical

integration of the system equations with initial conditions as the "xed points of the system
which ensures a steady state solution. This HBM/AFT technique has been used to validate
the solution obtained from numerical integration and also to "nd such solutions which are
not possible with numerical integration.

For the case when the modulating frequency u
2
"0 or u

2
is a subharmonic of u

1
, the

generalized Fourier series turns into a proper Fourier series with periodic frequency spectra
t
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Here ¹ is the least common period of the system and M is the number of samples taken for
"nding out steady state solution. In the present analysis, convergence occurred for
M"5(N). Broyden's method converged and gave a solution when the initial steady state
solution was taken for a neighboring parameter combination. For a combination not close,
there was no convergence. For "nding out multiple solutions (in regions of multivalued
solutions), the steady state solution X

ss
and >

ss
was taken for the solution possible with

numerical integration, and the frequencies u
1

and u
2

were set for the desired solution. This
method is used only for validating the numerical integration solutions since a solution has
to be known a priori. Also, this procedure is ine$cient in terms of computation time when
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many frequency components are present. Moreover, it is not possible to apply this method
in chaotic region.

4. BEARING STIFFNESS

The linearized bearing sti!ness is estimated by the Tamuras [7] method where= is the
constant radial force, N

b
is the number of balls, and C

b
is the spring constant obtained from

Hertzian analysis. X is the axis along the direction of the vertical constant force= and> is
the axis perpendicular to the direction of X
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whichever expression gives minimum value of H.

5. METHODS OF ANALYSIS

To analyze the results obtained from numerical integration various techniques are used
for studying the stability and nature of solutions. Higher order Poincare maps are generated
for studying the nature of solutions if it is harmonic, subharmonic, or chaotic. For "nding
out the "xed point of the system at a particular speed the non-autonomous shooting
method is used. The stability of the solution is found by the Floquets method [28] which
also gives the monodromy matrix from which the nature of bifurcation is known.

6. RESULTS AND DISCUSSION

The algorithms developed for the solution of the equations and the analysis have been
applied for the reported work by Fukata [4] for JIS6306 and the results match very well
[26]. In the present study for an SKF6002 ball bearing the radial internal clearance is taken
as the main parameter of study, which has not been reported by Fukata [4], Mevel and
Guyader [5] and Sankaravelu [6].

6.1. STATIC BEARING STIFFNESS

In the present work, an SKF6002 bearing supports a rigid horizontal rotor with no
imbalance force. The reported works by Fukata et al. [4], Mevel and Guyader [5] and
Sankaravelu [6] have taken the case of a deep groove ball bearing JIS6306.

The static sti!ness has been estimated for two levels of vertical force 6 and 24 N. From
Figure 3 it can be seen that for SKF6002 the sti!ness (natural frequency for m"0)6 kg)



Figure 3. Vertical and horizontal critical frequency.
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remains practically constant till a radial internal clearance of 6 km (="6 N) for both
values of vertical force. As the clearance is reduced further, sti!ness increases in all cases.
Natural frequency in the vertical direction is more than that in the horizontal direction. The
natural frequency is found to increase with increasing load for both the vertical and
horizontal directions. The critical speed for the balanced case is given by the speed at which
the varying compliance (exciting) frequency equals the natural frequency.

6.2. RESULTS OF THEORETICAL SIMULATION

The work reported in references [4}6] have focused more on a parametric e!ect
involving speed change and damping of ball bearings. In this work, besides speed as
a parameter of study, the e!ect of radial internal clearance is also studied. The radial
internal clearance is an important parameter of study because even if it is inevitable, it can
be controlled to a good extent.

For theoretical simulation the values of radial internal clearance taken are 20, 12, 6 and
1 km. For each of these clearance values, two values of damping 340 and 200 Ns/m are taken.
The higher value of 340 Ns/m is representative of the extreme value and the lower value of
200 Ns/m represents a medium level of damping in SKF 6002 with m"0)6 kg and="6 N.

Speed response plots are obtained for the combination of the above parameters under
study. These plots are generated by numerical integration to reach steady state when
peak-to-peak values of x and y displacements are obtained. For reaching steady state for the
"rst speed the initial conditions are taken as the "xed point solution. For successive speeds,
the initial conditions are taken as the steady state solution obtained for the preceding speed.
For a non-linear system the response plots have regions of multivalued solution [27] which
are generally the high-amplitude regions. Generating the response curve so that the ith
steady state speed solution is near the (i!1)th speed solution ensures that the same
response curve is plotted throughout, otherwise there is a danger of the solution jumping
from one response curve to another. Multi-solutions are obtained easily with the help of the
HBM/AFT technique when the solution does not have many frequency components and
the frequency content of the multivalued solutions is known a priori.

6.2.1. c
0
"20 km, C"200 Ns/m,="6 N

The overall response plot is shown in Figure 4. The peak-to-peak (pp) vertical response is
less than the peak-to-peak horizontal response in regions of high amplitude. The overall



Figure 4. Response plot, c
0
"20 km, C"200 N s/m,="6 N;x, period 1 unstable;p, chaotic regime; ) ) ) ) ) ) ,

vertical; } ) }, horizontal.
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response plot has a very rough appearance. Three regions can be identi"ed which have high
pp response. These regions are shown in Figure 4, bounded by lines A}A@, B}B@ and C}C@.
Figures 5(a, b) give the response plots of peak-to-peak amplitude of frequency components
corresponding to varying compliance (<C) frequency 1/2 <C, 1<C, 2<C, 3<C, 4<C and
5<C. The overall response plot is a vector sum of these frequency components for horizontal
and vertical directions, respectively, and several other sub- and superharmonic frequency
components which are not shown here. The response of the nth multiple of the varying
compliance frequency (<C) peaks at 1/nth of the frequency at which the<C frequency peaks.

Three regions of period 1 unstable response are seen in Figure 4. The "rst region from 915
to 6900 r.p.m. has period-doubling bifurcations. The eigenvalues of the monodromy matrix
go out through !1. This is also a region of multivalued solutions in which it is di$cult to
"nd the di!erent nT periodic solutions by numerical integration. Multiple solutions at
a speed of 1150 r.p.m. were found by HBM as shown in Figure 6.

Three regions of chaotic behavior are seen in this region. For the "rst chaotic region
1780}1880 r.p.m. the loss of stability is seen to be with the eigenvector crossing from #1.



Figure 5. (a) n<C responses plots for horizontal displacement c"20 km, C"200 N s/m; (b) n<C plots of
vertical displacement, c

0
"20 km C"200 N s/m.

Figure 6. 1150 r.p.m.
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The route to chaos by sudden loss of stability through a limit point has been shown by
Sankaravelu [8]. The chaotic solution at 2120 r.p.m. is shown in Figure 7. The frequency
spectrum has a band structure as shown in between spikes of <C and its multiples. The "ne
layered structure of the strange attractor is also clear from Poincare maps and at 2180 r.p.m.
the "fth subharmonic appears.

From a speed of 2550 r.p.m. onwards stability returns and there are period-doubling
bifurcations. As the speed is increased, the chaotic response appears between 5400 and



Figure 7. 2120 r.p.m., c
0
"20 km, C"200 N s/m.
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6945 r.p.m. Below 5400 r.p.m. the response is period one unstable. Period-doubling
bifurcation gives way to chaos at 5400 r.p.m. (Figure 8). The chaotic behavior in this region
seems to be very strong as compared to the region between 1980 and 2550 r.p.m. The
chaotic attractor is spread out and the band of frequency in the spectrum formed is also
quite prominent. As the speed is increased to 5500 r.p.m., the seventh subharmonic appears
after which the system again goes into period-doubling bifurcation. These pitchfork
bifurcations lead to chaos at 6400 r.p.m. From Figure 9 it can be seen that the chaos at
6400 r.p.m. is through a route of pitchfork bifurcations till 6300 r.p.m. after which chaos
suddenly appears. As speed increases, stability returns by a torus solution which is very
clear from the Poincare map at 6850 r.p.m.

From 7600 to 9000 r.p.m. there is period one stable response. From 9000 r.p.m. again
pitchfork bifurcation takes place and that leads to a chaotic region from 9715 to
10 500 r.p.m. as shown in Figure 10. In this region, the period-doubling bifurcations give
way to chaos at about 9700 r.p.m. The chaotic region extends up to 10 500 r.p.m. after which
the solution has a "fth subharmonic at 10 750 r.p.m. (Figure 11). The vertical displacement
response has a very strong nature of the "fth subharmonic which is clear from the multiple
curve phase plane plot. The phase plane plot for horizontal displacement does not show the
presence of any subharmonic.



Figure 8. 5400 r.p.m., c
0
"20 km, C"200 N s/m.
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Fukata [4], Mevel and Guyader [5] have reported period one unstable behavior or chaos
around the vertical and horizontal critical speeds. In this study, one observes that large
clearance results in very wide unstable regions which are not necessarily around the critical
speeds. From 17 000 to 22 500 r.p.m. again, there is period one unstable behavior. This



Figure 9. 6400 r.p.m., c
0
"20 km, C"200 N s/m.
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(third) region C}C@ is not reported by Fukata [4], Mevel and Guyader [5] or Sankaravelu
[6], since they have not taken clearance as a parameter of study, so this region could not be
studied by them. At 17 000 r.p.m. the eigenvalues of the monodromy matrix indicate Hopf
bifurcation.

6.2.2. c
0
"20 km C"340 Ns/m

On increasing the damping the level of the response peaks goes down. This is clear from
a comparison of Figures 4 and 12. Though the three regions of unstable behavior remain,
they reduce in terms of the range of speed. For a speed of 1630 r.p.m., the solution
from numerical integration compares well with the HBM solution (Figure 13). The
period one solution by way of pitchfork bifurcation loses stability at 1645 r.p.m.
(for 200 N s/m it is 915 r.p.m., Figure 4). This region is also multivalued and has
period-doubling bifurcations. At 8500 r.p.m. by way of Hopf bifurcation the solution
becomes unstable. It is seen that the frequency generated due to Hopf bifurcation changes
with speed. The ratio between VC frequency (carrier frequency) and modulating frequency
given by p decreases as speed increases (Figure 12). The torus solution becomes an IT stable
solution at 10 750 r.p.m. The Poincare map in Figures 14(a) and 14(b) show the nature of
solution is torus and IT stable. In Figure 14(b), the point becomes a fuzzy area as the
hyperplane crossing is determined for a tolerance e (since the exact crossing is di$cult to
establish).

The third area of instability between 17 000 and 22 500 r.p.m. appears for the high
damping case also. The peak-to-peak amplitude in this region is lower for higher damping



Figure 10. 9800 r.p.m., c
0
"20 km, C"200 Ns/m.
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and for horizontal displacement response this region does not develop at all. The solutions
in this region are 2 T stable.

6.2.3. c
0
"12 km C"200 Ns/m,="6 N

For an internal radial clearance of c
0
"12 km the response is analyzed for two values of

damping, 200 and 340 N s/m. From Tamura's [7] estimate of sti!ness in the vertical and
horizontal directions (Figure 3) it is seen that for c

0
"20 and 12 km, the sti!ness value

practically remains the same in the horizontal and vertical directions. On analyzing the
response plot for peak-to-peak amplitude against speed for the cases of c

0
"20 and 12 km

(Figures 4 and 15), it is seen that the peak (shown by P@ in Figure 4) develops at a lower
speed, 3500 r.p.m. for an increased radial clearance of 20 km (Figure 15), it is at 4000 r.p.m.



Figure 11. 10 750 r.p.m., c
0
"20 km, C"200 N s/m.

Figure 12. Response plots, c
0
"20 km, C"340 N s/m: ) ) ) ) ) ) , vertical; } ) }, horizontal;k, period one unstable.
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The region BB@ for 20 km clearance (Figure 4) has peak at 10 000 r.p.m. whereas for 12 km
(Figure 15) it is at 12 000 r.p.m. This shift in peaks points to an increase in the value of
sti!ness as clearance decreases. On comparing Figure 4 with Figure 15 it can be seen that
regions A}A@, B}B@ and C}C@ (which are regions of period one instability) shift towards
lower speed as clearance is increased. Within the regions A}A@ and B}B@ are the horizontal
and vertical critical speeds of the system respectively. Period one solution becomes unstable
from 1345 r.p.m. onwards, because of period-doubling bifurcations. The solution undergoes
pitchfork bifurcations (2, 4, and 8 T) till 2400 r.p.m. after which at 2440 r.p.m. chaotic



Figure 13. 1630 r.p.m., c
0
"20 km, C"340 N s/m: ** numerical integration; s, HBM/AFT.

Figure 14. Poincare maps c
0
"20 km, C"340 Ns/m.
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solution is obtained. From a speed of 2400}2900 r.p.m. the response becomes chaotic.
From Figure 16 at 2820 r.p.m., the band nature of the frequency spectra clearly indicates
chaotic solution. The Poincare map also shows the characteristic &&layered'' structure of
a chaotic response. From 3340 r.p.m., period one solution again becomes stable. Also, the
peak-to-peak response goes down (Figure 15), which is an indication of the end of the
multivalued region of response.

At a speed of 9500 r.p.m. a Hopf bifurcation occurs and again the peak-to-peak response
goes up. At 9500 r.p.m. the response is mode locked with the ratio between the varying
compliance frequency (570 Hz) and the newly generated frequency (71)25 Hz) being 8("p).
As the speed is increased the value of p decreases acquiring values of 6)09 and 5 at 11 000
and 12 000 r.p.m respectively. At 12 000 r.p.m. the solution becomes mode locked with
p"5. The Poincare map (Figure 17(b)) shows the period 5 orbit intersecting the
hyperplane.

From 13 000 r.p.m. the response becomes IT stable with low amplitude (Figure 15). The
third region CC@ starts at 20 400 r.p.m. The IT solution changes into a chaotic solution as
indicated by Poincare maps in Figure 18. The strange attractor shows signs of strong chaos
which begins to weaken from 20800 r.p.m. onwards and the torus solution appears at
21 010 r.p.m. After this, a mode locked response appears. The VC/5 makes an appearance at



Figure 15. Response plot, c
0
"20 km, C"200 N s/m: ) ) ) ) ) ) , vertical; } ) }, horizontal; q, chaotic response;

k, period 1 unstable.

Figure 16. 2820 r.m.s., c
0
"12 km, C"200 N s/m.
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20 750 r.p.m. (Figure 19) and the mode locked response is clearly visible from the time
response of the vertical displacement. The time period of the carrier frequency is 0)0085 s
( f"125 Hz"VC/5). The chaotic response seems to be weakly present giving
the characteristics of intermittency indicated y region AA@ of the time response plot of
Figure 19.



Figure 17. 12 000 r.p.m., c
0
"12 km, C"200 N s/m (orbit, Poincare map).
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6.2.4. c
0
"12 km, C"340 Ns/m,="6 N

On increasing damping, the peak-to-peak amplitude goes down as compared to
C"200 N s/m (Figure 15). The variation in the peak-to-peak amplitude as speed is
increased also goes. The result is a smoother curve as shown in Figure 20(a). An
important di!erence from the previous cases is that the third region CC@ is not present. The
response plots of 1/2VC (Figures 20(b,c)) also do not show high amplitude at twice the
critical speed.

Period one solution loses stability at about 2000 r.p.m. as a result of pitchfork bifurcation.
The region A}A@ becomes a multivalued region. At 2100 r.p.m. the multivalued
solution (Figure 21), is obtained by "nding the "xed point for successive speeds,
starting from a region where there is low amplitude and strong 1 T stable (single-valued
solution). For the present case, it was about 1000 r.p.m. The initial value for succeeding
speeds (speed step"5 r.p.m.) was taken as a "xed point of preceding speed. For small
changes in speed and other parameters remaining constant, the "xed point also
remains nearly the same, but there is a gradual change in its value. To continue on the
desired KT solution (K"1, 2,2), it is important to move like this. This procedure is
repeated for decreasing speed steps (5 r.p.m.) from some higher value of speed. In this case it
was taken as 2300 r.p.m. On running &&backwards'' and &&forward'' at 2100 r.p.m. di!erent
"xed points were obtained. Using these as initial conditions gave the 1 T solution (Figure
21(a)) and 4 T solution (Figure 21(b)). At 2380 r.p.m., a weak chaotic solution forms. This
multivalued high peak-to-peak amplitude region gives way to stable period one solution at
4200 r.p.m..

The period one solution remains stable uptill a speed of about 9700 r.p.m. when a
Hopf bifurcation takes place. The value of the new frequency which is generated because of
Hopf bifurcation changes with speed in the same manner as in the other cases where the
ratio between the exciting frequency and the new frequency ("p) decreases as speed
increases (9900 r.p.m., p"7)61; 10 500 r.p.m., p"6)3; 11 000 r.p.m., p"5)54; 12 000 r.p.m.,
p"4)77).

6.2.5. c
0
"6 km C"200 Ns/m="6 N

The speed response plot in Figure 22 has only one well-developed region of high
amplitude AA@. The peak for this level of clearance develops at a higher speed (6200 r.p.m.)
compared to a clearance of 12 km (4000 r.p.m.) and 20 km (3500 r.p.m.). This gradual shift in



Figure 18. Poincare map (19 980}21 010 r.p.m.).
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critical speed as a function of clearance is also re#ected in the experimental obser-
vations. From the response plot of VC and its components for vertical displacement, it can
be seen that 1

2
VC develops a peak at twice the critical speed, Figure 23 (+24 000 r.p.m.).

This peak is not so well developed as compared to c
0
"20 km cases. For c

0
"6 km (Figure

23), the peaks smoothen out. Also, the peaks &&A'' shift down for higher frequency
components.

Period one solution loses stability at 3200 r.p.m. by pitchfork bifurcation to 2 T solution.
At 3300 r.p.m. there is a 5 T solution (Figure 24) from which at 3400 r.p.m. a chaotic
solution forms. At 3500 r.p.m., 5 T solution forms which turns to 3 T at 3600 r.p.m. This



Figure 19. 20 750 r.p.m., c
0
"12 km, C"200 N s/m.
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solution stays at 3 T till about 3800 r.p.m. when the response becomes chaotic again. The
chaotic region continues till 4700 r.p.m. Then the response becomes a 2 T solution that
remains till 7000 r.p.m. after which the high peak-to-peak amplitude, multivalued region
again regains 1 T stable solution and low amplitude which continues up to 10 500 r.p.m. At
speeds higher than this, the increase in amplitude is much smoother with no signs of
instability. The amplitude, however, increases and peaks at 11 200 r.p.m. and then starts
reducing till 14 000 r.p.m. This smooth behavior resembles the response of a linear system.
The reduced internal radial clearance of 6 km obviously reduces the degree of non-linearity
and results in this linear &&tendency'' of the system. Noticeably, the peak attained at
11 500 r.p.m. appears only for vertical displacement response, the horizontal displacement
does not develop a peak. Qualitatively, this shows the absence of cross-coupling sti!ness in
the vertical direction. In the horizontal direction, there is some coupling as horizontal and
vertical displacement peaks at around 6500 r.p.m. The weak cross-coupling sti!ness also
results in the absence of Hopf bifurcation for this clearance and damping value. Day [14]
has shown analytically that Hopf bifurcation depends directly on the ratio of cross-coupling
sti!ness with damping of a rotor supported on bearings with radial internal clearance.

At 14 500 r.p.m., a weak superharmonic resonance is noticed. In a very short speed range
of 23 000}23 400 r.p.m. another small peak forms. This peak develops only for the vertical
displacement response and the nature of solution is 2 T.

6.2.6. c
0
"6 km, C"340 Ns/m,="6 N

Speed response characteristics for this case are given in Figure 25. Only one region of
instability beginning from 4000 r.p.m. is identi"ed. Period one stable solution loses stability



Figure 20. Response and n<C plots, c
0
"12 km, C"340 N s/m: ) ) ) ) ) ) , vertical; } ) }, horizontal.
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at 4000 r.p.m. by period-doubling bifurcations. The region of period one unstable solutions
has 2 T behavior till 7000 r.p.m.

6.2.7. c
0
"1 km, C"200 and 340 N s/m,="6 N

For a clearance value of 1 km the response plot, Figure 26, displays a strong resemblance
to the response plots of a linear rotor-bearing system with parametric e!ect [19]. The peaks



Figure 21. 2100 r.p.m., c
0
"12 km, C"340 Ns/m.

Figure 22. Response plot, c
0
"6 km, C"200 N s/m: ) ) ) ) ), vertical; } ) }, horizontal; k, unstable period

1 solution; q, chaotic response.
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develop at subsynchronous speeds which are 1/2, 1/3, 1/4,2 of the critical speed in the
vertical and horizontal directions. This is very clearly observed from Figure 25 where VC,
2VC, 3VC, 4VC, 5VC peak exactly at 1/2, 1/3, 1/4, 1/5 of the critical speed in the horizontal
and vertical directions. But there is no peak formed in the supersynchronous region unlike
the cases of c

0
"20, 12 and 6 km. As a result, 1/2 VC component does not develop a peak at

twice the critical speed. There are no regions of period 1 unstable solution. The regions of
high amplitude have superharmonic motion.

6.2.8. ="24 N

The vertical and horizontal critical speeds for="24 N are 15 800 r.p.m. and 5000 r.p.m.
respectively (Figure 3). For an increase in the constant radial force= the regions of period



Figure 23. n<C vertical displacement plot c
0
"6 km, C"200 N s/m.
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one instability decrease as shown in Figure 27, in which there are only two regions
as compared to three regions for ="6 N (Figure 4) and also the regions of
chaos. For c

0
"20 km C"200 N s/m, Figure 27, at 13 100 r.p.m., there is a Hopf

bifurcation and the response solution again becomes high amplitude. The torus
solution gives way to chaotic solution at 15 000 r.p.m. (Figure 28). This chaotic solution
is present for a very short speed span till 16 000 r.p.m. The chaotic solution weakens
to give way to a torus solution at 15 500 r.p.m. The phase plane plots show the existence
of two limit cycles which coexist, one is bigger and the other which is smaller but dense
(Figure 29).



Figure 24. Poincare maps (3300}3800 r.p.m.).
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7. EXPERIMENTAL INVESTIGATION

A experimental setup is used for studying the e!ect of bearing radial internal clearance on
the dynamic response of the rotor (Figure 30). The signals are obtained with the help of
proximity probes in the horizontal and vertical directions. These two signals are input into
a dual channel spectrum analyzer (DSA)HP 3582A. The setup has been made so that we
have a horizontal Je!cott rotor supported on anisotropic bearings. In this case, the
displacement response in the horizontal and vertical directions would peak at di!erent
speeds corresponding to the bearing sti!ness in the two directions [19].



Figure 25. Response plot, c
0
"6 km, C"340 N s/m: ) ) ) ) ), vertical; } ) }, horizontal; k, unstable period

1 solution; q, chaotic response.

Figure 26. n<C vertical displacement response plots, c
0
"1 km, C"200 N s/m.
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Figure 27. Response plot, ="24 N, c
0
"20 km. (a) C"200 N s/m: ) ) ) ) ), vertical; } )}, horizontal; k,

unstable period one solution; q, chaotic response; (b) C"340 N s/m: } ) }, horizontal; ) ) ) ) ), vertical;k, unstable
period one response; q, chaotic solution.
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The rotor system is horizontal and this results in the appearance of a very strong 2X
component in the response spectrum primarily because of clearance and anisotropic
sti!ness. Also, there are appearances of higher harmonics [3X, 4X,2] which are again the
result of the clearance and anisotropic e!ect. It is observed from the DSA that the amplitude
of 2X and higher harmonics peak at two frequencies. These two frequencies give us an
estimate of the two natural frequencies corresponding to the sti!ness in the vertical and
horizontal directions.

The limitation with the present experimental setup is that the maximum attainable speed
is 10 000 r.p.m. and the critical speed corresponding to bearing sti!ness does not fall in this
speed span. The shaft is rigid with its "rst #exible natural frequency above 900 Hz.
Assuming that the ends of the shaft supported by ball bearings are simple supports allowing
rotation, the shaft bending sti!ness is given by

K
s
"48EI/l3,

where

I"nd4/64.



Figure 28. Frequency spectra, Poincare maps="24 N, c
0
"20 km, C"200 N s/m.

Figure 29. Phase plane plot, 15 500 r.p.m.
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Taking l"0)06 m, r"0)076 m, E"2)0]1011 N/m2, d"0)015m, the value of
K

s
"1)6]108 N/m.
The bearing sti!ness as found out theoretically from Tamura's [7] and Gargiulo's [8]

methods is of the order of 107 N/m. Therefore, a shaft with a sti!ness of 1)6]108 N/m can



Figure 30. Experimental rig.

Figure 31. Response plots for 3X and 4X frequency components (a) C2 (b) C2 (c) C5 and C5-type SKF6002.
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be taken as rigid. The rotor is run from 0 to 10 000 r.p.m. and the vertical and horizontal
displacement responses are fed into the DSA. The 3X and 4X frequency components are
tracked and at various speeds the averaged r.m.s. amplitude is noted. The r.m.s. averaging is
done at a number of steady state speeds for 64 samples. This is done for the shaft supported
on C2 and C5 bearings as two separate setups. The observations have been plotted and
displayed in Figures 31(a}d).



TABLE 2

Critical frequency for SKF6002

Lower peak (Hz) Higher peak (Hz)

C2 280}300 420}510
C5 180}210 330}420

Shift in critical frequency from C2 to C5 &100 &100
(For change in bearing type)
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From Figures 31(a,b) for C2-type bearing (bearing of smaller clearance of about 5 km),
the amplitudes of 3X and 4X peaks are at two frequencies, i.e., 300 and 520 Hz for the
vertical direction and 280 and 420 Hz for the horizontal direction. The vertical
displacement amplitude (Figure 31(a)) of both the frequency peaks is more than the
horizontal displacement amplitude (Figure 31(b)). The vertical displacement signals for
both the frequency peaks (3X and 4X) coincide very well at 300 and 520 Hz. For the
horizontal displacement signal, the frequency peaks (3X and 4X) do not coincide very well.
The higher peak for 3X is at 420 Hz and for 4X about 500 Hz. There seems to be better
matching for the lower peak at 280 Hz. The mismatch at higher frequency is di$cult to
explain. It may, however, be due to the presence of some coupling between horizontal and
vertical modes in the case of 4X component. For the vertical displacement signal (Figure
31(a)), the higher frequency peak is the larger of the two because this frequency corresponds
to the critical speed due to the vertical sti!ness. Similarly, in Figure 31(b) for the horizontal
displacement signal, the lower peak is the larger of the two since this is the critical frequency
for the horizontal sti!ness.

For C5-type bearing (higher clearance of about 40 km), from Figures 31(c,d) the peaks
appear at 310 Hz for vertical displacement and at around 400 Hz for horizontal
displacement. In Figure 31(c) the higher peak coincides at 310 Hz for both 3X and 4X. The
lower peak is not visible here except slightly in 3X at about 200 Hz. For both 3X and 4X
frequency components, there is a steep rise before the peak of 310 Hz. The horizontal
displacement response (Figure 31(d)) for C5 does not have very good coincidence of peaks.
The lower peak appears to develop slightly around 180}240 Hz. The higher peak, which is
the dominant of the two but not sharp enough appears around 330}420 Hz. The above
results have been summarized in Table 2.

The lower and higher critical frequencies give an estimate of the sti!ness in the
> (horizontal) and X (vertical) directions, respectively, for a given mass, i.e., 0)6 kg in the
present case. The ratio between the two frequencies is about 0)6 which agrees reasonably
with the value suggested by Kramer [19, p. 136]. It has been noted in the theoretical
analysis of the bearing model without imbalance that under dynamic conditions because of
the di!erence in the radial internal clearance there is a shift in critical speed. A similar trend
is also shown experimentally by Flowers and Wu [17] where an increase in clearance at the
rotor support shifts the critical speed down.

The horizontal and vertical sti!ness work out to be 1)9]10)6 and 5]106 N/m for
C2-type bearing and, 9]105 and 3]106 N/m for C5-type bearing.

8. CONCLUSIONS

From the study of the dynamic response of a ball bearing supporting a horizontal rigid
perfectly balanced rotor the following conclusions can be drawn.



Figure 32. Regions of instability and chaotic behavior;==, chaotic response.

TABLE 3

Shift of peaks and unstable region with clearance

Span/peak (r.p.m.)

Regions 20 km 12 km 6 km 1 km

A}A@ 915}6800/3300 1345}3900/3700 3200}7000/6400 !/6000
B}B@ 8100}11 400/10 000 9700}13 000/12 000 10 500}13 000/11 200 !/12 500
C}C@ 16 700}22 200/17 000 20 200}22 000/20 200 23 000}23 800/23 200 */*
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1. The rotor bearing system has three high-amplitude regions (Figure 32). The "rst region is
one of period-doubling response where the period one response is unstable. This region
also has bifurcations leading to 3, 5 and 7 T solutions. Chaotic response appears in this
region which has a weak attractor as compared to chaotic behavior in the other two
regions. As Fukata [4] has shown, this region forms around horizontal critical speed.

2. The second region has unstable response due to Hopf bifurcation generating amplitude
modulation and quasiperiodic response. The ratio of the carrier frequency (<C) to the
modulating frequency decreases as the speed is increased. This leads to quasiperiodic and
mode locked behavior.

3. The third region appears for high radial internal clearance which previous studies have
not predicted. This region develops as a result of the peak formed due to the 1

2
<C

frequency component in the horizontal and vertical directions.
4. Radial internal clearance is an important parameter for determining the dynamic

response as it is seen that with increase in clearance the regions of unstable and chaotic
response become wider (Figure 32, Table 3).

5. The peaks developed shift down with increase in clearance (Table 3) which points to
a decrease in the dynamic sti!ness of the bearing with increasing clearance. This is not
predicted by the sti!ness estimates provided by Tamura [7] and Gargiulo [8].

6. Decrease in clearance increases the linear characteristics of the system. There are no
subharmonics formed or chaos as clearance decreases. This also happens when the
constant radial force = is increased. The regions of unstable behavior decrease with
increasing load. The increased load also results in higher sti!ness characteristics because
of the non-linear nature of the force deformation relationship.
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7. Increased damping results in lowered amplitude response and also reduced instability.
8. The experimental analysis shows that bearing clearance changes the response of a rotor

signi"cantly because of the change in dynamic sti!ness of the bearing. This has been
shown by theoretical analysis also, although most estimates of bearing sti!ness do not
take into account the change in dynamic sti!ness due to clearance, for example Tamura
[7], Gargiulo [8].
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APPENDIX A: NOMENCLATURE

u
cage

rotational speed of bearing cage, rad/s
u

ROTOR
rotational speed of rotor, rad/s

ulc varying compliance frequency, rad/s
c
0

radial internal clearance, km
h
i

angular position of the ith ball in the ball bearing
H dimensionless number c

0
/(=/N

b
C

b
)2@3

e very small number
l
ij

(iu
ROTOR

#julc), i and j are integers
R

i
radius of inner bearing race

R
O

radius of outer bearing race
N

b
number of bearing balls

BN bearing number, R
i
/(R

i
#R

O
) *N

b
C

b
sti!ness constant, N/m1>5

C damping constant, N s/m
K sti!ness, N/m
Fhi spring force at the ball at angular location hi
F
x

x-component of the resultant spring force
F
y

y-component of the resultant spring force
F
u

unbalance force
¹ time period
M number of time samples for the HBM/AFT method
= constant vertical force, N
a
Xij

, a
Yij

,
b
Xij

, b
Yij

coe$cients of generalized Fourier series for X and > displacements

c
Xij

, c
Yij

,
d
Xij

, d
Yij

coe$cients of generalized Fourier series for forces F
x

and F
y
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